ANTIMICROBIAL SUSCEPTIBILITY AND DISTRIBUTION OF ANTIMICROBIAL-RESISTANCE GENES AMONG ENTEROCOCCUS AND COAGULASE-NEGATIVE STAPHYLOCOCCUS ISOLATES RECOVERED FROM POULTRY LITTER

2007 ◽  
Vol 2 (4) ◽  
pp. e23-e23
Author(s):  
SHABBIR SIMJEE ◽  
PATRICK F. MCDERMOTT ◽  
DAVID G. WHITE ◽  
CHARLES HOFACRE ◽  
ROY D. BERGHAUS ◽  
...  
AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jolein Gyonne Elise Laumen ◽  
Christophe Van Dijck ◽  
Saïd Abdellati ◽  
Irith De Baetselier ◽  
Gabriela Serrano ◽  
...  

AbstractNon-pathogenic Neisseria are a reservoir of antimicrobial resistance genes for pathogenic Neisseria meningitidis and Neisseria gonorrhoeae. Men who have sex with men (MSM) are at risk of co-colonization with resistant non-pathogenic and pathogenic Neisseria. We assessed if the antimicrobial susceptibility of non-pathogenic Neisseria among MSM differs from a general population and if antimicrobial exposure impacts susceptibility. We recruited 96 participants at our center in Belgium: 32 employees, 32 MSM who did not use antibiotics in the previous 6 months, and 32 MSM who did. Oropharyngeal Neisseria were cultured and identified with MALDI-TOF–MS. Minimum inhibitory concentrations for azithromycin, ceftriaxone and ciprofloxacin were determined using E-tests® and compared between groups with non-parametric tests. Non-pathogenic Neisseria from employees as well as MSM were remarkably resistant. Those from MSM were significantly less susceptible than employees to azithromycin and ciprofloxacin (p < 0.0001, p < 0.001), but not ceftriaxone (p = 0.3). Susceptibility did not differ significantly according to recent antimicrobial exposure in MSM. Surveilling antimicrobial susceptibility of non-pathogenic Neisseria may be a sensitive way to assess impact of antimicrobial exposure in a population. The high levels of antimicrobial resistance in this survey indicate that novel resistance determinants may be readily available for future transfer from non-pathogenic to pathogenic Neisseria.


2020 ◽  
Author(s):  
Fang Huang ◽  
Shuang Li ◽  
Xiaohui Chi ◽  
Peipei Wen ◽  
Hao Fu ◽  
...  

Abstract Background: Bronchoscopes has been linked to the outbreaks of nosocomial infections. We aim to investigate the phenotypic and genomic profiles of bronchoscope-associated Klebsiella aerogenes isolates, and their association with genome public available isolates from human and environment.Methods: We performed a prospective single-center study sampling echoendoscopes after clinical use and after normal decontamination procedures. Bacterial screening was conducted by culturing the sample on Mueller-Hinton agar plates. Antimicrobial susceptibility testing was performed using the broth microdilution method. Whole-genome sequencing of K. aerogenes isolates was performed using an Illumina HiSeq system and comparative genomics analysis were conducted.Results: Over the 5-month period, a total of 358 isolates and 13 isolates were recovered from samples after clinical procedures and samples after decontamination procedures, respectively. Antimicrobial susceptibility testing found 7 K. aerogenes isolates to exhibit low-level resistance to antimicrobial agents. Among 7 K. aerogenes isolates, we found 5 sequence types (STs). Whole genome sequencing and comparison analysis observed the genetic diversity in our bacterial collection, which clustered into three main clades. Furthermore, we identified a total of 43 antimicrobial resistance genes in the K. aerogenes core genomes. As expected, human isolates encoded more antimicrobial resistance genes than that environmental isolates. Conclusions: This study first described the phenotypic and genomics characteristics of bronchoscope-associated K. aerogenes. The present observations demonstrated that broadly investigation of specific pathogens using publicly available global genomes offered the opportunity to identify prevalent clones associated with various hosts, sources, and geographical locations.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1442
Author(s):  
Alyzza Marie B. Calayag ◽  
Kenneth W. Widmer ◽  
Windell L. Rivera

Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the blaTEM antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of blaTEM and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of blaTEM and blaCTX-M was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria.


2021 ◽  
Author(s):  
Alyzza Marie B. Calayag ◽  
Kenneth W. Widmer ◽  
Windell L. Rivera

Abstract Background: Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major contributor in Philippine livestock production.Results: Our results show that 61.2% of the isolates carried antimicrobial resistance genes qnrS and blaTEM. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of blaTEM and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of blaTEM and blaCTX-M was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that majority of the isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant.Conclusions: High prevalence rates of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both ß-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria.


2016 ◽  
Vol 46 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Carlos Augusto de Oliveira Júnior ◽  
Rodrigo Otávio Silveira Silva ◽  
Amanda Nádia Diniz ◽  
Prhiscylla Sadanã Pires ◽  
Francisco Carlos Faria Lobato ◽  
...  

ABSTRACT: The present study aimed to evaluate five non-toxigenic strains of Clostridium difficile (NTCD) in vitro and to select one strain to prevent C. difficile (CDI) infection in hamsters ( Mesocricetus auratus ). The NTCD strains were evaluated for spore production in vitro, antimicrobial susceptibility and presence of antimicrobial resistance genes. Approximately 107 spores of the selected strain (Z31) were administered by esophageal gavage in hamsters pretreated with 30mg kg-1 of clindamycin. The challenge with a toxigenic strain of C. difficile was conducted at 36 and 72h, and the animals were observed for 28 days. The NTCD strain of C. difficile (Z31) was able to prevent CDI in all animals that received it.


2020 ◽  
Author(s):  
Fang Huang ◽  
Shuang Li ◽  
Xiaohui Chi ◽  
Peipei Wen ◽  
Hao Fu ◽  
...  

Abstract Background: Bronchoscopes has been linked to the outbreaks of nosocomial infections. We aim to investigate the phenotypic and genomic profiles of bronchoscope-associated Klebsiella aerogenes isolates, and their association with genome public available isolates from human and environment.Methods: We performed a prospective single-center study sampling echoendoscopes after clinical use and after normal decontamination procedures. Bacterial screening was conducted by culturing the sample on Mueller-Hinton agar plates. Antimicrobial susceptibility testing was performed using the broth microdilution method. Whole-genome sequencing of K. aerogenes isolates was performed using an Illumina HiSeq system and comparative genomics analysis were conducted.Results: Over the 5-month period, a total of 358 isolates and 13 isolates were recovered from samples after clinical procedures and samples after decontamination procedures, respectively. Antimicrobial susceptibility testing found 7 K. aerogenes isolates to exhibit low-level resistance to antimicrobial agents. Among 7 K. aerogenes isolates, we found 5 sequence types (STs). Whole genome sequencing and comparison analysis observed the genetic diversity in our bacterial collection, which clustered into three main clades. Furthermore, we identified a total of 43 antimicrobial resistance genes in the K. aerogenes core genomes. As expected, human isolates encoded more antimicrobial resistance genes than that environmental isolates. Conclusions: This study first described the phenotypic and genomics characteristics of bronchoscope-associated K. aerogenes. The present observations demonstrated that broadly investigation of specific pathogens using publicly available global genomes offered the opportunity to identify prevalent clones associated with various hosts, sources, and geographical locations.


2021 ◽  
Vol 9 (4) ◽  
pp. 707
Author(s):  
J. Christopher Noone ◽  
Fabienne Antunes Ferreira ◽  
Hege Vangstein Aamot

Our culture-independent nanopore shotgun metagenomic sequencing protocol on biopsies has the potential for same-day diagnostics of orthopaedic implant-associated infections (OIAI). As OIAI are frequently caused by Staphylococcus aureus, we included S. aureus genotyping and virulence gene detection to exploit the protocol to its fullest. The aim was to evaluate S. aureus genotyping, virulence and antimicrobial resistance genes detection using the shotgun metagenomic sequencing protocol. This proof of concept study included six patients with S. aureus-associated OIAI at Akershus University Hospital, Norway. Five tissue biopsies from each patient were divided in two: (1) conventional microbiological diagnostics and genotyping, and whole genome sequencing (WGS) of S. aureus isolates; (2) shotgun metagenomic sequencing of DNA from the biopsies. Consensus sequences were analysed using spaTyper, MLST, VirulenceFinder, and ResFinder from the Center for Genomic Epidemiology (CGE). MLST was also compared using krocus. All spa-types, one CGE and four krocus MLST results matched Sanger sequencing results. Virulence gene detection matched between WGS and shotgun metagenomic sequencing. ResFinder results corresponded to resistance phenotype. S. aureus spa-typing, and identification of virulence and antimicrobial resistance genes are possible using our shotgun metagenomics protocol. MLST requires further optimization. The protocol has potential application to other species and infection types.


Sign in / Sign up

Export Citation Format

Share Document